Southampton

School of Civil Engineering and the Environment

Trace element supplementation for stable food waste digestion

<u>Yue Zhang</u>, Charles Banks, Ying Jiang, Sonia Heaven Bio-energy and Organic Resources Research Group University of Southampton UK

I. International Conference on Biogas Microbiology, Leipzig, Germany, September 14 to 16, 2011

Laboratory digesters

Mesophilic food waste digestion performance

Inoculum: sewage sludge digestate; **Temperature:** $36 \pm 1^{\circ}$ C; **Organic loading rate:** $2 \text{ kg VS m}^{-3} \text{ d}^{-1}$

Time (days)

Time (days)

4

Stable operation of food waste digestion - Trace element supplementation

Aim - Optimising trace element supplementation strategy

- > Distinguish essential trace elements for stable food waste digestion
- > Identify optimal trace element supplementation strength

Research approaches

- Batch flask trials for screening purpose
- Semi-continuous digester operation to monitor the long-term effect

Batch screening tests

Fractional factorial design

Run	Pattern	Со	Ni	Мо	Se	Fe	W	Zn	Cu	Mn	Al	В	
1		-	-	-	-	-	-	-	-	-	-	-	
2	+++	-	-	-	Se	Fe	W	-	-	-	-	-	
3	+-++	-	-	Mo	-	Fe	W	-	-	-	-	-	
4	++	-	-	Mo	Se	-	-	-	-	-	-	-	
5	-++	-	Ni	-	-	Fe	-	-	-	-	-	-	
6	-+-+-+	-	Ni	-	Se	-	W	-	-	-	-	-	
7	-++	-	Ni	Mo	-	-	W	-	-	-	-	-	
8	-++++	-	Ni	Mo	Se	Fe	-	-	-	-	-	-	
9	++	Co	-	-	-	_	W	-	-	-	-	-	
10	+++	Co	-	-	Se	Fe	-	-	-	-	-	-	
11	+-+-+	Co	-	Мо	-	Fe	-	-	-	-	-	-	
12	+-++-+	Со	-	Mo	Se	-	W	-	-	-	-	-	
13	++++	Co	Ni	-	-	Fe	W	-	-	-	-	-	
14	++-+	Со	Ni	-	Se	-	-	-	-	-	-	-	
15	+++	Co	Ni	Мо	-	-	-	-	-	-	-	-	
16	+++++	Co	Ni	Mo	Se	Fe	W	-	-	-	-	-	
17	+++++++	Со	Ni	Mo	Se	Fe	W	Zn	-	-	-	-	
18	+++++++++	Co	Ni	Мо	Se	Fe	W	Zn	Cu	Mn	_	_	
19	+++++++++++++++++++++++++++++++++++++++	Со	Ni	Мо	Se	Fe	W	Zn	Cu	Mn	Al	В	

Trace element (TE) concentrations

		Trace element concentration (mg l-1)				
Essential element	Compound used	Supplemented at the beginning of the tests	Existing in the test digestate			
Cobalt (Co)	$CoCl_2 \cdot 6H_2O$	1.0	0.083			
Nickel (Ni)	$NiCl_2 \cdot 6H_2O$	1.0	2.9			
Molybdenum (Mo)	$(\rm NH_4)_6 Mo_7 O_{24} \cdot 4H_2 O$	0.2	0.29			
Selenium (Se)	Na_2SeO_3	0.2	0.050			
Tungsten (W)	$Na_2WO_4 \cdot 2H_2O$	0.2	<0.035			
Iron (Fe)	$FeCl_2 \cdot 4H_2O$	5.0	173.7			
Zinc (Zn)	$ZnCl_2$	0.2	8.11			
Copper (Cu)	$CuCl_2 \cdot 2H_2O$	0.1	5.75			
Manganese (Mn)	$MnCl_2 \cdot 4H_2O$	1.0	18.5			
Aluminium (Al)	$AlCl_{3} \cdot 6H_{2}O$	0.1	63.3			
Boron (B)	H ₃ BO ₃	0.1	2.5			

Experimental set up

VFA degradation profiles

11

Essential trace elements for food waste digestion

Tier	Trace element	Compound	Dosing strength (g tonne ⁻¹)		
1 st	Selenium (Se)	Na ₂ SeO ₃	0.2		
	Molybdenum (Mo)	$(NH_4)_6 Mo_7 O_{24} \cdot 4H_2 O$	0.2		
	Cobalt (Co)	CoCl ₂ ·6H ₂ O	1.0		
2 ^{nu}	Tungsten (W)	Na ₂ WO ₄ ·2H ₂ O	0.2		
	Iron (Fe)	FeCl ₂ ·4H ₂ O	5.0		
3"	Nickel (Ni)	NiCl ₂ ·6H ₂ O	1.0		
	Zinc (Zn)		0.2		
	Copper (Cu)	CuCl ₂ ·2H ₂ O	0.1		
4 th	Manganese (Mn)	MnCl ₂ ·4H ₂ O	1.0		
	Aluminium (Al)	AlCl ₃ ·6H ₂ O	0.1		
	Boron (B)	H ₃ BO ₃	0.1		

Semi-continuous trials

Organic loading rate (OLR)

13

Volatile fatty acids (VFA) profiles

Co and Se dilute-out curves – VFA profile

TE required *vs* TE in the food waste

	Minimum requirement at a moderate	Hackney,	Eastleigh,	Ludlow,	Luton, South
	loading rate	London	Hampshire	Shropshire	Deutorustifire
Cobalt (Co)	0.22	0.09 ± 0.05	0.02 ± 0.01	0.02 ± 0.00	< 0.06
Selenium (Se)	0.16	0.10 ± 0.08	0.03 ± 0.00	0.28 ± 0.14	< 0.07
Total Kjeldahl					
Nitrogen (TKN)		8100	7500	7400	8100

Unit: mg kg⁻¹ fresh matter

FISH analysis on methanogenic community structure

Density gradient centrifugation using Nycodenz

FISH images

Probe name	Target group	Fluoro- chrome	Formamide (%)	
EUB338	Bacteria (most)	Cy5	20~50	
EUB338+	Bacteria (remaining)	Cy5	20~50	
ARC915	Archaea	6-Fam	20~50	
MX825	Methanosaetaceae	Cy3	50	
MS1414	Methanosarcinaceae	Cy3	50	
hMS1395	MS1414-helper	-	50	
hMS1480	MS1414-helper	-	50	
MSMX860	Methanosarcinales	Cy5	45	
MG1200	Methanomicrobiales	Cy3	20	
MB1174	Methanobacteriales	Cy3	45	
MC1109	Methanococcales	Cy3	45	

Conclusions

Conclusions

Trace elements

Selenium and cobalt are the key TE needed for the long-term stability of food waste digesters, but are likely to be lacking in the food waste produced in the UK. We are still not sure about Mo and W.

Digester operation

Following proper TE supplementation strategy, food waste digesters can be operated stably with low VFA concentrations at an organic loading rate of 5 kg VS m⁻³ d⁻¹ with a volumetric biogas production of 3.8 STP m³ m⁻³ d⁻¹ and specific biogas production of 0.76 STP m³ kg⁻¹ VS.

Methanogenic community structure

> Methanogenic population was comprised exclusively of members of the order Methanomicrobiales, according to FISH analysis.

Thank you for your attention