

Lab scale studies to troubleshoot instability issues in food waste digesters

Yue Zhang

I. Annual AD Research & Development Forum, Bristol, 1-2 November 2011

Source-segregated food waste from household

Digesters used in the Burford study

Volatile fatty acid (VFA) concentrations

Ludlow demonstration plant

Volatile fatty acid (VFA) concentrations

Biogas production

Collected food waste

Laboratory digesters

CSTR-type digesters: 2-litre 5-litre 40-litre 100-litre

Long chain fatty acids (LCFA) accumulation

X-ray diffraction analysis

Instability

> Negative response

- accumulation of long chain and volatile fatty acids

> Loading limit

- less than 2 kg VS m⁻³ day⁻¹

Anaerobic conversion of biosolids to methane

Possible reasons

Ammonia toxicity: 5000~7000 mg N I⁻¹

> Trace elements deficiency: Co, Ni, Fe, Se, Mo, W, Zn, Cu, Mn, Al, B

Batch experiments - fractional factorial design

Run	Pattern	Со	Ni	Мо	Se	Fe	W	Zn	Cu	Mn	Al	В
1		-	-	-	-	-	-	-	-	-	-	-
2	+++	-	-	-	Se	Fe	W	-	-	-	-	-
3	+-++	-	-	Mo	-	Fe	W	-	-	-	-	-
4	++	-	-	Mo	Se	-	-	-	-	-	-	-
5	-++	-	Ni	-	-	Fe	-	-	-	-	-	-
6	-+-+-+	-	Ni	-	Se	-	W	-	-	-	-	-
7	-++	-	Ni	Mo	-	-	W	-	-	-	-	-
8	-++++	-	Ni	Mo	Se	Fe	-	-	-	-	-	-
9	+	Co	-	-	-	-	W	-	-	-	-	-
10	+++	Co	-	-	Se	Fe	-	-	-	-	-	-
11	+-+-+	Co	-	Mo	-	Fe	-	-	-	-	-	-
12	+-++-+	Co	-	Mo	Se	-	W	-	-	-	-	-
13	++++	Co	Ni	-	-	Fe	W	-	-	-	-	-
14	++-+	Co	Ni	-	Se	-	-	-	-	-	-	-
15	+++	Co	Ni	Mo	-	-	-	-	-	-	-	-
16	++++++	Со	Ni	Mo	Se	Fe	W	-	-	-	-	-
17	++++++	Co	Ni	Mo	Se	Fe	W	Zn	-	-	-	-
18	++++++++	Co	Ni	Mo	Se	Fe	W	Zn	Cu	Mn	-	-
19	+++++++++++++++++++++++++++++++++++++++	Co	Ni	Mo	Se	Fe	W	Zn	Cu	Mn	Al	В

VFA degradation profiles

Digester trials

Organic loading rate (OLR)

Volatile fatty acids (VFA) profiles

Time (days)

Co and Se dilute-out curves – VFA profile

Se: 0.16 mg l⁻¹ = 0.16 g m⁻³ = 10²¹ Se m⁻³ Microorganisms: 10¹⁶ m⁻³

TE required vs TE in the UK food waste

	Minimum requirement at a moderate loading rate	Hackney, London	Eastleigh, Hampshire	Luton, South Bedfordshire	Ludlow, Shropshire
Cobalt (Co)	0.22	0.09 ± 0.05	0.02 ± 0.01	0.02 ± 0.00	< 0.06
Selenium (Se)	0.16	0.10 ± 0.08	0.03 ± 0.00	0.28 ± 0.14	< 0.07
Total Kjeldahl Nitrogen (TKN)		8100	7500	7400	8100

Unit: mg kg⁻¹ fresh matter

Digestion efficiency

Total ammoniacal nitrogen (TAN)

Classification of Methanogen

Methanogen	Carbon source			
Methanobacteriales	CO_2 / formate	T		
Methanococcales	CO_2 / formate			
Methanomicrobiales	CO_2 / formate	Hydrogenotrophic		
Methanosarcinales				
Methanosarcinaceae	CO_2			
	Acetate	Acetotrophic		
Methanosarcinales				
Methanosaetaceae	Acetate	\downarrow		

Density gradient centrifugation – SEM images

Separated microbial biomass

Food waste residues

Fluorescence in-situ hybridisation (FISH)

Inoculum - Methanosaetaceae

Fluorescence in-situ hybridisation (FISH)

After 3 months - *Methanosarcinaceae*

After 1.5 years - Methanomicrobiales

After 3 years?

FISH images on another digestate sample

Inoculum

Vegetable waste digestate

Conclusions – trace elements

- Selenium and cobalt are the key trace elements needed for the long-term stability of food waste digesters, but are likely to be lacking in the food waste
- The minimum concentrations recommended in food waste digesters for selenium, cobalt are around 0.16, 0.22 mg l⁻¹ respectively, when running at a moderate organic loading rate
- A total selenium concentration greater than 1.5 mg l⁻¹ is likely to be toxic to the microbial consortium in the digester
- Food waste is likely to have sufficient Al, B, Cu, Fe, Mn, and Zn. We are still not sure about Ni, Mo and W

Conclusions – digester operation

- Following proper trace element supplementation strategy, food waste digesters can be operated stably with low VFA concentrations at an organic loading rate of 5 kg VS m⁻³ d⁻¹ with a volumetric biogas production of 3.8 STP m³ m⁻³ d⁻¹ and specific biogas production of 0.76 STP m³ kg⁻¹ VS
- Prevention of VFA accumulation in the digester by trace element supplementation is necessary, as recovery of a severely VFA-laden digester is not a rapid process even when supplements are added

Application of research finding

Acknowledgements

Thanks to DEFRA WR1208

Prof Charles Banks, Dr Sonia Heaven, Biogen-Greenfinch

...and to EU FP7 VALORGAS for continuing support to take this work forward

