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Abstract 

The research investigated the production of Biohythane in a two-phase anaerobic digestion process 

treating food waste as substrate. Preliminary batch assays were carried out at initial organic 

loadings of 15, 20, 25 and 30 kg TVS m
-3

, in stirred 1.5-l reactors at 55 °C. The results showed all 

hydrogen was produced within the first 24 hours after feeding and the highest load tested gave the 

maximum hydrogen production (0.047 m
3
 H2 kg

-1
VS, H2 30%). Similar loadings were then tested in 

a two-phase system. Hydraulic retention times of 3 and 12 days were applied to the first and second 

reactor respectively. In order to keep the pH at ~5.5, either supernatant or whole digestate from the 

methanogenic reactor was recirculated to the first phase. Results showed that hydrogen was 

produced (0.117 Nm
3 

kg
-1

 VS, 47.7%) when recirculating whole digestate with an organic loading 

rate of 20 kg TVS m
-3

 day
-1

.  
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Abbreviation 

AD: anaerobic digestion, FW: food waste, HRT: hydraulic retention time, SHP: specific hydrogen 

production, BHO: bio-hydrogen production, OLR: organic loading rate, PTOT: total phosphorus, SGP: 

specific gas production, SSC: steady state condition, TKN: total Kjeldahl nitrogen, TS: total solids, TVS: 

total volatile solids, VFAs: volatile fatty acids, IOL: initial organic loads, CSTR: continuous stirred tank 

reactor, GC: gas chromatography, OFMSW: organic fraction of municipal solid waste. 

 

1. Introduction 

 

Anaerobic digestion (AD) is a strong and well-established technique for renewable energy 

production. When applied to waste management, in addition to the production of carbon-neutral 

energy, it gives the extra benefit of treating organic wastes that would otherwise have to be 

processed in another way. The technique is even more attractive as it has also been demonstrated to 

be capable of producing hydrogen: this is already considered an important carrier for next-

generation technologies, and much research is now focused on the best way to produce it in a clean 

and cost-effective way. Biological hydrogen production from organic biomass fermentation is 

widely considered as one of the best options with the greatest future potential [1]. Hydrogen is 

produced during fermentation and acetogenesis in the anaerobic digestion process, and a two-phase 

AD system can be exploited to produce both hydrogen and methane [2, 3]. With such a scenario, the 

hydrogen could be used either by itself or to improve the combustion performance of methane, 

making a mixture that simulates the composition of Hythane. Such a mixture, often described as 

BioHythane, has a typical composition of 5-10% H2, 30-40% CO2, 50-65% CH4, and has been 

shown to give better efficiency and emissions performance than natural gas when used in a 

conventional internal combustion engine [4, 5, 6]. 

One of the most important challenges for sustaining hydrogen production in a reactor optimised for 

dark fermentation is to avoid the growth of H2-consuming bacteria [7]. Due to the daily addition of 

mixed culture contained in food waste (FW), there is always a risk that unwanted archaea such as 

H2-consuming methanogens could grow and deplete the hydrogen produced. There are many ways 

to select H2-producing bacteria in a mixed culture approach, such as physical-chemical treatment 

(heat-shock or chemical treatment of inoculum or substrate) or process parameter optimisation (low 

retention time, selection of organic loading). Many of these have already been discussed by other 

authors [8, 9, 10, 11].  



Several reviews have been published on optimisation of conditions for biohydrogen production 

though dark fermentation, but there is still some confusion due to the wide range of conditions 

applied [12, 13]. The type of substrate makes a big difference in terms of yield, and most studies 

have used simple synthetic substrates (e.g. glucose) that only require a short hydraulic retention 

time (HRT) in a single-stage reactor for effective conversion. FW is a combination of components 

some of which require more complex metabolic pathways to break them down. This affects the 

HRT, which typically ranges from 2 to 5 days in a continuous or semi-continuous fed system. Two-

phase approaches using FW as substrate without recirculation have been tested over a wide range of 

organic loadings [14, 15, 16, 17, 18, 19], and in general showed a specific hydrogen production 

(SHP) below 71 m
3 

H2 kg
-1

 VS. Only a few studies have used a two phase approach with 

recirculation of the AD effluent [11, 14, 16, 20].  

 

The present research used a two-phased approach with the objective of maximising hydrogen 

production in the first phase, while maintaining an acceptable methane conversion in the second 

phase. The purpose was to determine the best conditions for producing hydrogen in such a system 

using FW as substrate. The particular emphasis of the work was to develop a self-sustaining process 

that could be scaled up, using digestate recirculation as a means of controlling pH without external 

chemical additions. First, preliminary batch tests were carried out to test inoculum activity and 

determine the initial organic loading for a semi-continuous study. This type of test could be 

described as a Biohydrogen Production (BHP) test, since the reactors were fed only once at the start 

of the test and gas production and composition were monitored until no net production was 

achieved. In the semi-continuous experiments, four organic loading rates (OLR) were tested with 

recirculation of either whole digestate from the second phase or liquid obtained after centrifugation 

of the digestate, to determine which was most effective for pH control.  

 

2. MATERIALS AND METHODS 

 

2.1 Substrate and inoculum characteristics 

The substrate used was source segregated domestic food waste collected from the South Shropshire 

Biowaste Digester in Ludlow, UK [21]. The material was first taken out of biodegradable plastic 

bags and any non-biodegradable contaminants (including large bones and fruit stones) were removed. 

It was then homogenised using a macerating grinder (S52/010 Waste Disposer, IMC Ltd, UK), 

packed into 4-litre plastic storage containers, and frozen at -18 
o
C. Before use the feedstock was 

thawed and stored at 4 
o
C. The inoculum used was from Millbrook Wastewater Treatment Works, 



Southampton, UK, an anaerobic digestion plant treating municipal wastewater biosolids at an 

operating temperature of 37 °C. Table 1 presents the substrate and inoculum characteristics. 

 

Table 1. Characteristics of substrate and inoculum 

 

Parameter Unit Value ± SD   

  
Substrate Inoculum 

TS g/kg WW 248 ± 19 35.2 ± 0.5 

TVS g/kg WW 236 ± 22 23.1 ± 0.4 

pH 
 

nd 7.5 

TKN mgN/kg WW 5983 ± 497 nd 

NH3 mgN/kg WW nd 1911 ± 43 

COD mgO2/kg TS 998 ± 71 nd 

Total VFA mgCOD/l nd 509 ± 64 

Total alkalinity mgCaCO3/l nd 8500 ± 248 

Nd: not determined  

 

2.2 Reactor configuration 

The continuously-stirred tank reactors (CSTR) used in this experimentation had volumes of either 2 

or 5 L and were fitted with a flanged top plate through which a stirrer was inserted via a draught 

tube: this allowed the digester contents to be stirred continuously at 30 rpm by an off-set bar stirrer, 

as shown in Figure 1. The digesters were maintained at 52 °C by circulation of hot water from a 

thermostatically controlled reservoir. Feeding was carried out via a hole in the top flange and 

digestate was removed via a wide-bore tube in the base. Gas production was measured with a gas 

flow meter (gas counter) constructed and calibrated as described by Walker and co-workers [22] 

and connected to gas sampling bags (SKC Ltd, Blandford Forum, UK). The device works by means 

of an inverted tipping bucket immersed in liquid. As the gas bubbles fill the bucket it tips and a 

magnet activates a reed switch connected to a counting device. Gas production is reported at STP of 

0 °C and 101.325 kPa. 



 

Figure 1: Cross-section diagram of CSTR digesters showing heating coils (left) and stirrer (right) 

[37]. 

 

2.3 Analytical methods 

Total solids (TS), total volatile solids (TVS), total Kjeldahl nitrogen (TKN), chemical oxygen 

demand (COD) and ammonia were measured according to Standard Methods 2540 G, 4500 PJ, 

5220 B, and 4500-NH3 G, respectively [23]. pH was measured using a Jenway 3010 pH meter 

(Jenway, London, UK) with temperature compensation and combination electrodes, calibrated daily 

with standard buffer solutions (Fisher Scientific UK Ltd, Loughborough, UK). Alkalinity was 

determined by titration with 0.25 N H2SO4 to endpoint pH 4.0 and the results expressed as total 

alkalinity. VFA concentrations were quantified in a Shimazdu GC-2010 gas chromatograph 

(Shimadzu, Milton Keynes, UK), using a flame ionisation detector and a capillary column type SGE 

BP-21 with helium as carrier gas. The GC oven temperature was programmed to increase from 60 

to 210 °C in 15 min, with a final hold time of 5 min. The temperatures of injector and detector were 

200 and 250 °C, respectively. Standard solutions containing 50, 250 and 500 mg/L of acetic, 

propionic, iso-butyric, n-butyric, iso-valeric, valeric, hexanoic and heptanoic acids were used for 

VFA calibration. Samples for VFA determination were acidified by addition of formic acid to give 

a 10% concentration. Gas composition was measured using a Varian CP 3800 gas chromatograph 

(Varian, UK) with a gas sampling loop using argon as the carrier gas at a flow of 50 ml min
-1

. The 

GC was fitted with a Hayesep C column and a molecular sieve 13 x (80–100 mesh) operating at a 

 

 

 

 

 

 

 

	

	

	

 

	



temperature of 50
 o

C. The GC was calibrated using standard gases containing 35% CO2 and 65% 

CH4, and 20% H2 with 80% N2. 

 

2.4 Experimental set-up 

For the batch tests, 12 reactors with a 2 L volume were initially filled in with 1.5 L of inoculum 

without any nutrient supplement, and held at 52 
o
C for 5 days. Tests were carried out in triplicate at 

initial organic loads (IOL) of 15, 20, 25, and 30 kg TVS m
-3

 corresponding to wet weight feed 

additions of 94.1, 138.2, 156.9 and 207.4 g of FW. The surplus of inoculum was hence removed in 

order to keep a total volume of 1.5 L; substrate/inoculum TVS ratio was respectively 0.68, 1.04, 

1.19 and 1.64. Gas production, gas composition and VFA concentration were measured every hour 

for the first 8 hours, then at longer intervals.  

The semi-continuous trial was carried out in eight pairs of CSTR digesters, each pair comprising a 

hydrolytic reactor with a working volume of 1 L, and a methanogenic digester with a working 

volume of 4 L. Feeding of the reactors was carried out as shown in Table 2. Four pairs of reactors 

were operated with recirculation of whole digestate, and four with recirculation of digestate 

supernatant after centrifugation. To achieve this, 333 mL of digestate was removed every day from 

each phase before feeding. For the four systems with supernatant-only recirculation, the digestate 

from the methanogenic reactor was centrifuged at 3000 rpm for 30 minutes in a refrigerated 

centrifuge (Centra-8R Model 2478, IEC Co., USA) and the supernatant was separated from the 

solids which were then disposed of. The amount of FW required in each case to give the desired 

OLR was then made up to 333 mL by adding either whole digestate or supernatant from the second 

phase, and the mixture was fed to the hydrolytic reactor. The digestate removed from the hydrolytic 

reactor was fed to the second phase. This gave internal HRT of 3 and 12 days in the hydrolytic and 

methanogenic reactors respectively, but the total HRT of the system was much longer (Table 2). 

Gas production was monitored daily; gas composition, VFA and pH every two days; ammonia and 

alkalinity every three days; TS, TVS, COD, TKN once per week. 

 

 

 

 

 

 

 

 



Table 2. Experimental conditions in semi-continuous trial  

Reactor 

pair 

Feed      I Phase 

 

 II Phase Whole system 

 

 OLR Internal 

HRT 

Internal 

HRT 

OLR Total 

HRT 

Recirculation Qr/Qin* 

  g WW 

day-1 

kg TVS 

m-3 day-1 

days days kg TVS 

m-3 day-1 

days   

1 63 15 3 12 3 79 Digestate 4,29 

2 85 20 3 12 4 59 Digestate 2,92 

3 106 25 3 12 5 43 Digestate 2,14 

4 127 30 3 12 6 39 Digestate 1,62 

5 63 15 3 12 3 79 Supernatant 4,29 

6 85 20 3 12 4 59 Supernatant 2,92 

7 106 25 3 12 5 43 Supernatant 2,14 

8 127 30 3 12 6 39 Supernatant 1,62 

* Ratio of volume of recycled digestate to new feed  

 

 

3. Results and discussion 

 

3.1 Batch tests 

The results of the batch tests (Table 3) showed that increasing the initial organic load led to a 

progressive increase in hydrogen production, with IOL of 15, 20, 25 and 30 kg TVS m
-3

 giving SHP 

of 0.012, 0.021, 0.035 and 0.047 Nm
3
 kg

-1
 TVS respectively. These values were reached after 24 h 

in fact the maximum hydrogen content was reached before 24 h in all tests. In contrast the specific 

biogas production decreased with increasing IOL from 0.782 at IOL 15 to 0.239 Nm
3
 kg

-1
 TVS at 

IOL 30. The methane content also fell, and at 30 kg TVS m
-3

 only accounted for about 10% of the 

gas volume. In terms of cumulative yield, the highest hydrogen production was at 30 kg TVS m
-3

 

(2116 mL of H2 in 327 hours); methane and total biogas production were both maximised at 25 kg 

TVS m
-3

 with 12.58 L of CH4 and 24.80 L of biogas in 327 hours.  

 

 

 

 

 

 

 



Table 3. Batch test results at four initial organic loadings 

 

Table 4. Reference results for batch tests carried out using Food Waste as substrate 

Reference Nature of FW 
Inoculum/substrate 

pre-treatment 
pH control T range pH 

SHP 

  l kgVS-1 

[31] OFMSW Y Y M 5.5 46-118 

[24] FW from household N N T 6 57 

[24] FW from household N N M <4.8 39 

[32] OFMSW N Y M 5-6 121.6 

[33] 

OFMSW, Primary Sludge and 

Waste Activated Sludge 

mixture 

N Y M 7 112 

[34] Household solid waste N Y Extr-T 7 257 

[35] Rice + carrots organic waste N - M - 19-96 

[36] Selected OFMSW N - T 7 195 

 

As shown in Table 4, the results obtained in the present research are very close to those of Jinming 

and co-workers [24], who carried out batch tests on a similar type of FW without any pre-treatment 

or pH control, and found SHP of 0.057 and 0.039 Nm
3
 kg

-1
 TVS in the thermophilic and mesophilic 

ranges respectively. The batch tests in this research demonstrated that in a single reactor dark 

fermentation can be isolated by applying an IOL of 30 kg TVS m
-3

 or above, as at this load 

methanogenesis was completely inhibited while hydrogen production was constant and continuous 

with an average H2 concentration of 6.4% throughout the 327 hours of the test (Table 3). These 

results confirmed that high organic loadings enhance hydrogen production whilst as the same time 

inhibiting methanogenesis, probably as a result of the accumulation of intermediate products 

Parameter Unit 
IOL ( kg TVS m-3) 

15 20 25 30 

Gas Production 

H2 

Nm3 kg-1 TVS 

0.012 0.021 0.035 0.047 

CH4 0.042 0.360 0.335 0.021 

Biogas 0.782 0.709 0.661 0.239 

H2 

min 

% 

0.0 0.0 0.0 3.2 

max 17.7 19.4 31.6 27.9 

stability 0.0 0.0 0.0 6.4 ± 2.2 

CH4 

min 

% 

9.3 7.3 2.8 2.1 

max 72.8 71.4 68.9 40.9 

stability 69.9 ± 2.1 70.0 ± 2.4 73.9 ± 1.0 9.5 ± 4.5 

Cumulative 

Production  

(320 hours) 

H2 

mL 

263 623 1322 2116 

CH4 9,534 10,799 12,581 942 

Biogas 17,594 21,271 24,805 10,758 



leading to a fall in pH.  Figures 2a and 2b show the profiles of total VFA and some individual acids 

(acetic, propionic and butyric) at two of the applied IOL (20 and 30 kg TVS m
-3

 respectively).  

 

   a)      b)   

Figure 2: a) VFA production during IOL 20; b) VFA production during IOL 30. 

 

At IOL 20 there was an accumulation of acetic and butyric acids during the first 150 h, almost all of 

which was then converted into methane and carbon dioxide after 300 h. This showed that 

methanogenic activity was not inhibited and the microorganisms were able to use and convert the 

VFA into CH4 and CO2. In contrast, IOL 30 showed accumulation of VFA with no subsequent 

conversion to methane, indicating that methanogenesis was inhibited; this condition gave the best 

hydrogen yields compared to the other IOL tested. 

 

3.2 Semi-continuous trials  

The trials carried out with supernatant recirculation showed no positive results in term of hydrogen 

production. At the higher OLRs of 25 and 30 kg TVS m
-3 

day
-1

, the first phase immediately fell into 

acidic conditions, leading quickly to failure in the methanogenic phase. The two lower OLRs of 15 

and 20 kg TVS m
-3 

day
-1

 showed the ability to sustain methanogenesis in the second phase. In the 

conditions applied, however, the pH in the first phase was always below 4.5, far from the optimal 

range for hydrogenase enzyme of 5.5-6.5 [25]. The conditions at OLR of 15 and 20 kg TVS m
-3 

day
-

1
 instead gave a good example of two-phase AD for methane production, where the first phase 

provides optimal conditions for hydrolysis and the second phase for methanogenesis. The OLR of 

20 kg TVS m
-3 

day
-1

 in particular could be considered as an optimal loading for a two-phase system, 

as it gave the highest SGP of over above 0.8 Nm
3
 kg

-1
 VS, although steady state conditions had not 

yet been reached.  

The tests carried out with recirculation of the whole digestate gave much more interesting results. 

Table 5 summarises all of the parameters monitored for all four reactor pairs, together with the yield 



from the process. As can be seen, the loading of 20 kg TVS m
-3 

day
-1

 on the hydrolytic reactor gave 

the best performance with a stable hydrogen concentration of 47.7% in the first phase (Figure 3a) 

and  60% methane in the second phase (Figure 3b).  

 

Table 5. Steady state condition average values of process parameters for loadings of 15, 20, 25 and 

30 kg TVS m
-3 

day
-1

 applied to the hydrolytic reactor of a two-phase system treating FW with 

digestate recirculation 

Parameter Unit 
15 20 25 30 

kg TVS m-3 day-1 

Characterisation of the first phase reactor 

TS g kg-1 WW 47.06 ± 1.38 56.59± 18 104.88± 0.44 114.39± 0.26 

TVS g kg-1 WW 36.94 ± 1.30 45.26± 19 92.31± 0.48 101.19± 0.21 

COD mg O2 g
-1 TS 987 ± 33 1034 ± 30 920± 51 929± 50 

TKN mg N g-1 TS 68 ± 9 92 ± 7 57 ± 2 55± 5 

pH  5.82 ± 0.24 5.22± 0.16 4.63± 0.1 5.03± 0.1 

NH3 mg NH4
+-N L-1 2910 ± 87 2666± 81 1893± 51 1708± 96 

VFA mg COD L-1 10468 ± 197 13756± 1318 6664± 304 12847± 1268 

Alkalinity mg CaCO3 L
-1 10500 ± 404 8547± 523 3554± 312 6150± 1075 

Characterisation of the second phase reactor 

TS g kg-1 WW 39.64 ± 0.40 43.38± 1.0 49.20± 0.17 62.79± 0.31 

TVS g kg-1 WW 28.91 ± 0.18 32.08± 0.9 36.88± 0.22 49.79± 0.34 

COD mg O2 g
-1 TS 937 ± 28 936 ± 28 722± 23 793± 21 

TKN mg N g-1 TS 59 ± 5 46.9 ± 2 89.8 ± 5 86.1± 2 

pH  7.80 ± 0.01 7.69± 0.07 7.55± 0.03 5.72± 0.1 

NH3 mg NH4
+-N L-1 2975 ± 93 3295± 151 2471± 204 2524± 284 

VFA mg COD L-1 3850 ± 336 7064± 979 6034± 678 17494± 2133 

Alkalinity mg CaCO3 L
-1 10500 ± 404 14090± 437 11803± 518 10897± 860 

First phase reactor yields 

SGP Nm3 kg-1 TVS 0.201 ± 0.028 0.240± 0.032 0.009± 0.002 0.053± 0.018 

H2 % 0.5 ± 0.1 47.7± 1.1 0.4± 0.3 42.8± 3.5 

CH4 % 24.6 ± 2.3 0.3± 0.1 0.6±0.1 0.3±0.1 

SHP Nm3 kg-1 TVS 0.001 0.117± 0.014 0.000 0.022± 0.09 

Second phase reactor yields 

SGP Nm3 kg-1 TVS 0.728 ± 0.060 0.512± 0.031 0.619± 0.033 0.210± 0.071 

H2 % - - - - 

CH4 % 65.6 ± 2.2 61.2± 2.4 65.1± 0.1 37.3± 3.9 

SMP Nm3 kg-1 TVS 0.484 ± 0.035 0.311± 0.035 0.422± 0.059 0.077± 0.036 
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Figure 3. Gas production parameters at OLR 20 kg TVS m
-3 

day
-1

 with whole digestate 

recirculation: a) Gas composition of the first phase; b) Gas composition of the second phase; c) 

SGP; d) SHP and SMP  

 

In Figure 3c it can be seen that the SGP with a loading of 20 kg TVS m
-3 

day
-1

 on the first phase 

showed a small decrease after day 32 for several days, but then regained a stable value of around 

0.240 Nm
3
 kg

-1
 TVS. The SHP (Figure 3d) showed a similar trend, with an average production of 

0.117 Nm
3
 kg

-1
 TVS. pH and total alkalinity in first phase were stable at 5.22 and 8.5 g CaCO3 L

-1
 

respectively after day 15. Total VFA in the first phase was quite high as expected, stabilising at 

around 13.8 g COD L
-1

, but with no signs of further accumulation. Ammonia on the other hand 

showed an upward trend, reaching around 2.7 g NH4
+
-N L

-1
 in the final week. 

Table 6 shows results from other studies in which hydrogen has been produced under similar 

conditions and where external pH control was not used. The H2 concentration and SHP found in the 



present work are far higher than that measured by other authors; a better performance is reported 

only by Chu and co-workers [16], who found an SHP of 0.205 Nm
3
 kg

-1
 TVS with an H2 

concentration of 52-56%. 

 

Table 6. Experimental conditions and hydrogen yields in CSTR-type reactors treating FW only 

without external pH control 

Reference I Phase II Phase OLR T range** pH HRT H2 SHP 

 Reactor type Reactor type 
I Phase 

kgVS m-3d-1 
  days % l kg-1 TVS 

[14] CSTR CSTR - T 5 - 6 2.5 – 6 25 – 63 20 – 30 

[14] CSTR CSTR 4.7 – 5.6 T 5 7.07 44 - 

[15] CSTR CSTR 37.5 M 5.2 2 42 43 

[16] CSTR CSTR 38.4 T 5.5 1.3 52 – 56 205 

[17] SCRD* CSTR 15.1 M 5.2 – 5.8 10  71 

[17] SCRD* CSTR 22.65 M 5.2 – 5.8 6.6 30 65 

[18] CSTR CSTR 170 M 4.9 0.31 29 2.7 

[18] CSTR CSTR 49 T 4.8 1.20 34 7.6 

[19] CSTR CSTR 3 – 4.5 T 5.3 3 - 48 

[19] CSTR CSTR 3 – 4.5 T 5.3 1 - 40 

*Semi Continuous Rotating Drum 

** T - thermophilic, M - mesophilic 

 

 

At the loading of 20 kg TVS m
-3 

day
-1

 on the hydrolytic reactor, a stable methane concentration of 

61.2% was established in the second phase after about 15 days (Figure 3c) and the SGP was 0.512 

Nm
3
 kg

-1
 VS. pH was stable at 7.69 throughout the trial. With respect to VFA, acetic and butyric 

acids were detected at fairly low and stable concentrations throughout the experimental run, while 

propionic acid accumulated sharply during the first 15 days. Total VFA were still accumulating 

slightly at the end of the run, with an average value in the final two weeks of 7.1 g COD L
-1

. 

Ammonia also accumulated, with the average for the last week equal to 3.3 g NH4
+
-N L

-1
. The total 

SGP for the whole two-phase system was 0.752 Nm
3
 kg

-1
 TVS.  

 

Two phase approaches with conditions similar to those applied in this experiment have been tested 

by others, as shown in Table 7. The performance of the second phase was similar in terms of SGP 

to that in the present study. 

 



Table 7. Experimental condition applied and hydrogen yields without pre-treatment and external 

pH control in a two-phase system 

R
ef

er
en

ce
 

S
u

b
st

ra
te

 First Phase Second Phase 

T 

range 
pH HRT OLR SHP 

T 

range 
HRT OLR SGP 

    days kgVS m-3d-1 l kg-1 TVS  days kgVS m-3d-1 Nm3 kg-1 TVS 

[14] FW T 5-6 2.5-6 20.8-8.45 20-30 T 18-30 2.84-1.18 0.49 

[16] FW T 5.5 1.3 38.4 205 M 5 6.6 0.61 

[38] FW T 5.5-5.7 1.9 39* 83 T 7.7 8.4* 0.21** 

[30] FW T 5.4 3.3 16 51 T 12.6 4 0.64 

* On a COD basis 

** CH4 

 

 

 

Concerning the other three load conditions, some observations can be made based on the results in 

Table 5. The loading of 15 kg TVS m
-3 

day
-1

 on the hydrolytic reactor was insufficient to reduce the 

pH to the optimum of 5.5 for dark fermentation, so that on recirculation of whole digestate the H2-

consuming and CH4-producing archaea were no longer inhibited, with consequent methane 

production. The loading of 25 kg TVS m
-3 

day
-1

 on the hydrolytic reactor was too high for the 

system tested as the alkalinity recirculated was insufficient, resulting in a reduction of pH to the 

point where hydrogen production was not possible in the first phase. As happened with supernatant 

recirculation, the system behaved like a two-phase system for methane production. As result, in the 

first phase only solubilisation of organic compounds occurred, while in the second phase 

methanogenesis showed good performance as the COD arrived already solubilised and ready to use. 

The results obtained during the working period at 30 kg TVS m
-3 

day
-1

 showed that raising the 

organic load gave a general inhibition of both the phases. The SHP, SMP and SGP are shown in 

Figure 4. 
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Figure 4. Specific gas productions for all loadings tested with whole digestate recirculation  

 

The results clearly showed that not all of the conditions tested were suitable for combined hydrogen 

and methane production. At all of the loadings tested, recirculation of supernatant alone from the 

second phase did not lead to adequate pH control and was not sufficient to sustain dark fermentation 

for hydrogen production in the first phase. Recirculation of whole digestate returned not only 

alkalinity but also biomass, providing a continual inoculum of fermentative organisms to the first 

phase. At the two lower loadings this also allowed the recycled methanogenic organisms to take 

advantage of the acids and hydrogen produced, preventing the necessary drop in pH. At the highest 

loading where over-acidification occurred, it is possible that a greater volume of digestate could be 

recirculated from the second stage to improve the alkalinity in the first stage reactor. This would 

however reduce the internal HRT in both phases. It is clear that a suitable balance has to be 

achieved between OLR, total HRT and internal HRT in the two phases, and for this substrate the 

balance appears to be at a loading of around 20 kg TVS m
-3 

day
-1

 on the hydrolytic reactor, 

corresponding to an OLR on the whole system of 4 kg TVS m
-3 

day
-1

. This loading rate gave a final 

gas composition of 18% H2, 39% CH4 and 43% CO2 which does not match the ideal biohythane 

profile as the percentage of hydrogen is too high. There are a number of possible solutions for this, 

such as splitting the food waste load so that a proportion is added directly to the second phase 

reactor; or alternatively dosing some of the hydrogen-rich gas from the first into the second phase 

reactor as a substrate for hydrogentrophic methanogenesis. The main problem seen in the operation 

of this system was the accumulation of ammonia:  this in turn may be associated with population 

changes in the anaerobic consortium and with VFA accumulation [26, 27]. This is likely to lead to 

deterioration in system performance, although it is unclear whether this would first affect the 



hydrolytic or methanogenic phase. Although trace element addition has been shown to prevent 

propionic acid accumulation in mesophilic FW digestion [28] this solution has so far not proved 

effective in thermophilic conditions with the same food waste [29]. For future scale-up of the 

process, measures to control ammonia accumulation may have to be applied: an example of a 

possible solution is given by Cavinato and co-workers [30]. 

 

4. Conclusions 

 

Batch tests were effective in showing the suitability of the selected inoculum/substrate ratios for 

testing for hydrogen production in the thermophilic range. During batch tests, the highest initial 

load gave the greatest hydrogen yield, while methanogenesis was completely inhibited at an IOL of 

30 kg TVS m
-3

.  

 

Semi-continuous trials with supernatant recirculation did not show any significant hydrogen 

production. The supernatant recirculated about 90% of the digestate alkalinity but this was not 

enough to control the pH in the first phase, where acidic conditions established within the first 

week. At OLR of 25 and 30 kg TVS m
-3 

day
-1

 on the hydrolytic reactor both phases were 

completely inhibited, while at 15 and 20 kg TVS m
-3 

day
-1

 the system acted as a two-stage AD 

system for methane production. 

 

Tests with whole digestate recirculation demonstrated that a high hydrogen yield could be achieved 

with an OLR of 20 kg TVS m
-3 

day
-1

 on the hydrolytic reactor. With the recirculation conditions 

applied, the load of 15 kg TVS m
-3 

day
-1

 was too low and led to a methanogenic shift within the first 

month, while 25 and 30 kg TVS m
-3 

day
-1

 were too high and led to acidic conditions in the first 

phase.  

 

For hydrogen production the best yield was obtained at an OLR of 20 kg TVS m
-3 

day
-1

 on the 

hydrolytic reactor and recirculating whole digestate with a Qr/Qin ratio of 2.9. In the first phase pH 

was self-controlled over the experimental period at a value of 5.22 and a SHP of 0.117 Nm
3
 kg

-1
 VS 

was observed. Hydrogen concentration in the biogas was 47.7%. SGP in the second phase was 

0.512 Nm
3
 kg

-1
 VS while the total SGP was 0.752 Nm

3
 kg

-1
 VS. These results are better than 

achieved in most previous studies, but there are issues in relation to long term stability as a result of 

high ammonia concentrations, possibly associated with volatile fatty acid accumulation. If a 

solution to this can be found the process appears promising for scale-up.  
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